Tuesday 25 February 2020

Propulsion, Powerded aircraft....

Propulsion

Propeller

An aircraft propeller, or airscrew, converts rotary motion from an engine or other power source, into a swirling slipstream which pushes the propeller forwards or backwards. It comprises a rotating power-driven hub, to which are attached several radial airfoil-section blades such that the whole assembly rotates about a longitudinal axis.[32] Three types of aviation engines used to power propellors include reciprocating engines (or piston engines), gas turbine engines, and electric motors. The amount of thrust a propeller creates is determined by its disk area—the area in which the blades rotate. If the area is too small, efficiency is poor, and if the area is large, the propeller must rotate at a very low speed to avoid going supersonic and creating a lot of noise, and not much thrust. Because of this limitation, propellers are favored for planes that travel at below Mach 0.6, while jets are a better choice above that speed.[33] Propeller engines may be quieter than jet engines (though not always) and may cost less to purchase or maintain and so remain common on light general aviation aircraft such as the Cessna 172. Larger modern propeller planes, such as the Dash 8, use a jet engine to turn the propeller, primarily because an equivalent piston engine in power output would be much larger and more complex.

Reciprocating engine

Reciprocating engines in aircraft have three main variants, radialin-line and flat or horizontally opposed engine. The radial engine is a reciprocating type internal combustion engine configuration in which the cylinders "radiate" outward from a central crankcase like the spokes of a wheel and was commonly used for aircraft engines before gas turbine engines became predominant. An inline engine is a reciprocating engine with banks of cylinders, one behind another, rather than rows of cylinders, with each bank having any number of cylinders, but rarely more than six, and may be water-cooled. A flat engine is an internal combustion engine with horizontally-opposed cylinders.

Gas turbine

A turboprop gas turbine engine consists of an intake, compressor, combustor, turbine, and a propelling nozzle, which provide power from a shaft through a reduction gearing to the propeller. The propelling nozzle provides a relatively small proportion of the thrust generated by a turboprop.

Electric motor


Solar Impulse 1, a solar-powered aircraft with electric motors.
An electric aircraft runs on electric motors rather than internal combustion engines, with electricity coming from fuel cellssolar cellsultracapacitorspower beaming,[34] or batteries. Currently, flying electric aircraft are mostly experimental prototypes, including manned and unmanned aerial vehicles, but there are some production models on the market already.[35]

Jet


The Concorde supersonic transport aircraft
Jet aircraft are propelled by jet engines, which are used because the aerodynamic limitations of propellers do not apply to jet propulsion. These engines are much more powerful than a reciprocating engine for a given size or weight and are comparatively quiet and work well at higher altitude. Variants of the jet engine include the ramjet and the scramjet, which rely on high airspeed and intake geometry to compress the combustion air, prior to the introduction and ignition of fuel. Rocket motors provide thrust by burning a fuel with an oxidizer and expelling gas through a nozzle.

Turbofan

Most modern jet planes use turbofan jet engines, which balance the advantages of a propeller while retaining the exhaust speed and power of a jet. This is essentially a ducted propeller attached to a jet engine, much like a turboprop, but with a smaller diameter. When installed on an airliner, it is efficient so long as it remains below the speed of sound (or subsonic). Jet fighters and other supersonic aircraft that do not spend a great deal of time supersonic also often use turbofans, but to function, air intake ducting is needed to slow the air down so that when it arrives at the front of the turbofan, it is subsonic. When passing through the engine, it is then re-accelerated back to supersonic speeds. To further boost the power output, fuel is dumped into the exhaust stream, where it ignites. This is called an afterburner and has been used on both pure jet aircraft and turbojet aircraft although it is only normally used on combat aircraft due to the amount of fuel consumed, and even then may only be used for short periods of time. Supersonic airliners (e.g. Concorde) are no longer in use largely because flight at supersonic speed creates a sonic boom, which is prohibited in most heavily populated areas, and because of the much higher consumption of fuel supersonic flight requires.
Jet aircraft possess high cruising speeds (700–900 km/h or 430–560 mph) and high speeds for takeoff and landing (150–250 km/h or 93–155 mph). Due to the speed needed for takeoff and landing, jet aircraft use flaps and leading edge devices to control the lift and speed. Many jet aircraft also use thrust reversers to slow down the aircraft upon landing.

Ramjet


Artist's concept of X-43A with scramjet attached to the underside
A ramjet is a form of jet engine that contains no major moving parts and can be particularly useful in applications requiring a small and simple engine for high-speed use, such as with missiles. Ramjets require forward motion before they can generate thrust and so are often used in conjunction with other forms of propulsion, or with an external means of achieving sufficient speed. The Lockheed D-21 was a Mach 3+ ramjet-powered reconnaissance drone that was launched from a parent aircraft. A ramjet uses the vehicle's forward motion to force air through the engine without resorting to turbines or vanes. Fuel is added and ignited, which heats and expands the air to provide thrust.[36]

Scramjet

A scramjet is a supersonic ramjet and aside from differences with dealing with internal supersonic airflow works like a conventional ramjet. This type of engine requires a very high initial speed in order to work. The NASA X-43, an experimental unmanned scramjet, set a world speed record in 2004 for a jet-powered aircraft with a speed of Mach 9.7, nearly 12,100 kilometers per hour (7,500 mph).[37]

Rocket


Bell X-1 in flight, 1947
In World War II, the Germans deployed the Me 163 Komet rocket-powered aircraft. The first plane to break the sound barrier in level flight was a rocket plane – the Bell X-1. The later North American X-15 broke many speed and altitude records and laid much of the groundwork for later aircraft and spacecraft design. Rocket aircraft are not in common usage today, although rocket-assisted take offs are used for some military aircraft. Recent rocket aircraft include the SpaceShipOne and the XCOR EZ-Rocket.
There are many rocket-powered aircraft/spacecraft planes, the spaceplanes, that are designed to fly outside Earth's atmosphere.

History, first flying machine...

History


Le Bris and his glider, Albatros II, photographed by Nadar, 1868

Otto Lilienthal in mid-flight, c. 1895

Antecedents

Many stories from antiquity involve flight, such as the Greek legend of Icarus and Daedalus, and the Vimana in ancient Indian epics. Around 400 BC in GreeceArchytas was reputed to have designed and built the first artificial, self-propelled flying device, a bird-shaped model propelled by a jet of what was probably steam, said to have flown some 200 m (660 ft).[11][12] This machine may have been suspended for its flight.[13][14]
Some of the earliest recorded attempts with gliders were those by the 9th-century poet Abbas ibn Firnas and the 11th-century monk Eilmer of Malmesbury; both experiments injured their pilots.[15] Leonardo da Vinci researched the wing design of birds and designed a man-powered aircraft in his Codex on the Flight of Birds (1502).
In 1799, George Cayley set forth the concept of the modern airplane as a fixed-wing flying machine with separate systems for lift, propulsion, and control.[16][17] Cayley was building and flying models of fixed-wing aircraft as early as 1803, and he built a successful passenger-carrying glider in 1853.[5] In 1856, Frenchman Jean-Marie Le Bris made the first powered flight, by having his glider "L'Albatros artificiel" pulled by a horse on a beach.[18] Then Alexander F. Mozhaisky also made some innovative designs. In 1883, the American John J. Montgomery made a controlled flight in a glider.[19] Other aviators who made similar flights at that time were Otto LilienthalPercy Pilcher, and Octave Chanute.
Sir Hiram Maxim built a craft that weighed 3.5 tons, with a 110-foot (34 m) wingspan that was powered by two 360-horsepower (270 kW) steam engines driving two propellers. In 1894, his machine was tested with overhead rails to prevent it from rising. The test showed that it had enough lift to take off. The craft was uncontrollable, which Maxim, it is presumed, realized, because he subsequently abandoned work on it.[20]
In the 1890s, Lawrence Hargrave conducted research on wing structures and developed a box kite that lifted the weight of a man. His box kite designs were widely adopted. Although he also developed a type of rotary aircraft engine, he did not create and fly a powered fixed-wing aircraft.[21]
Between 1867 and 1896, the German pioneer of human aviation Otto Lilienthal developed heavier-than-air flight. He was the first person to make well-documented, repeated, successful gliding flights.

Early powered flights


Patent drawings of Clement Ader's Éole.
Clement Ader constructed his first of three flying machines in 1886, the Éole. It was a bat-like design run by a lightweight steam engine of his own invention, with four cylinders developing 20 horsepower (15 kW), driving a four-blade propeller. The engine weighed no more than 4 kilograms per kilowatt (6.6 lb/hp). The wings had a span of 14 m (46 ft). All-up weight was 300 kilograms (660 lb). On 9 October 1890, Ader attempted to fly the Éole. Aviation historians give credit to this effort as a powered take-off and uncontrolled hop of approximately 50 m (160 ft) at a height of approximately 200 mm (7.9 in).[22][23] Ader's two subsequent machines were not documented to have achieved flight.[24]
The Wright brothers flights in 1903 are recognized by the Fédération Aéronautique Internationale (FAI), the standard setting and record-keeping body for aeronautics, as "the first sustained and controlled heavier-than-air powered flight".[4] By 1905, the Wright Flyer III was capable of fully controllable, stable flight for substantial periods. The Wright brothers credited Otto Lilienthal as a major inspiration for their decision to pursue manned flight.

Santos-Dumont 14-bis, between 1906 and 1907
In 1906, Alberto Santos-Dumont made what was claimed to be the first airplane flight unassisted by catapult[25] and set the first world record recognized by the Aéro-Club de France by flying 220 meters (720 ft) in less than 22 seconds.[26] This flight was also certified by the FAI.[27][28]
An early aircraft design that brought together the modern monoplane tractor configuration was the Blériot VIII design of 1908. It had movable tail surfaces controlling both yaw and pitch, a form of roll control supplied either by wing warping or by ailerons and controlled by its pilot with a joystick and rudder bar. It was an important predecessor of his later Blériot XI Channel-crossing aircraft of the summer of 1909.[29]
World War I served as a testbed for the use of the airplane as a weapon. Airplanes demonstrated their potential as mobile observation platforms, then proved themselves to be machines of war capable of causing casualties to the enemy. The earliest known aerial victory with a synchronized machine gun-armed fighter aircraft occurred in 1915, by German Luftstreitkräfte Leutnant Kurt WintgensFighter aces appeared; the greatest (by number of Aerial Combat victories) was Manfred von Richthofen.
Following WWI, aircraft technology continued to develop. Alcock and Brown crossed the Atlantic non-stop for the first time in 1919. The first international commercial flights took place between the United States and Canada in 1919.[30]
Airplanes had a presence in all the major battles of World War II. They were an essential component of the military strategies of the period, such as the German Blitzkrieg, The Battle of Britain, and the American and Japanese aircraft carrier campaigns of the Pacific War.

Development of jet aircraft

The first practical jet aircraft was the German Heinkel He 178, which was tested in 1939. In 1943, the Messerschmitt Me 262, the first operational jet fighter aircraft, went into service in the German Luftwaffe. In October 1947, the Bell X-1 was the first aircraft to exceed the speed of sound.[31]
The first jet airliner, the de Havilland Comet, was introduced in 1952. The Boeing 707, the first widely successful commercial jet, was in commercial service for more than 50 years, from 1958 to 2010. The Boeing 747 was the world's biggest passenger aircraft from 1970 until it was surpassed by the Airbus A380 in 2005.

Konto sonst weg

  WhatsApp gibt künftig Daten an Facebook Mit dem neuesten Update des Messengers WhatsApp macht die Facebook-Tochter auf eine wesentliche Än...